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This Document Contains Preliminary Information

The information contained here, while a honest attempt to illustrate a good Zorro III card design,
is still preliminary in nature and subject to possible errors and omissions. At the time of this
writing, some of the features of this design were not yet testable in an Amiga 3000, as the
enhanced bus controller chip was not yet available. We don’t expect any problems with this
design, but it’s only responsible to supply you with this caveat.

Commodore Technology reserves the right to correct any mistake, error, omission, or viscious
lie. Corrections will be published as updates to this document, which will be released as
necessary in as developer-friendly a manner as possible. Revisions will be tracked via the
revison number that appears on the front cover.

All information herein is Copyright © 1990 by Commodore-Amiga, Inc., and may not be
reproduced in any form without permission.

IMPORTANT INFORMATION

"We don’t know a millionth of one percent about anything."
-Thomas Alva Edison
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CHAPTER 1
INTRODUCTION

This document fully describes an example Zorro III Plug-In-Card (PIC) design for a simple
asynchronous dynamic RAM memory card. Its intent is to describe the procedures and
underlying theories behind a basic Zorro III design. However, it is not a Zorro III designer’s
bible or any such rulebook. It should provide the designer with a better understanding of Zorro
III PIC design, and perhaps provide a starting point for the beginning Amiga peripheral designer.

1.1 Intended Audience

This document was written primarily for hardware engineers interested in designing Plug-
In-Cards for the Zorro III expansion bus. A reasonable level of microcomputer knowledge is a
prerequisite to get much meaning out of these pages. A good understanding of the Zorro III bus
theory, as outlined inThe Zorro III Bus Specification(available from Commodore), is essential.
Knowledge of basic TTL digital design with standard MSI and PAL devices is required, as is an
understanding of dynamic RAMs. Familiarity with the Motorola 680x0 processors will also be
quite useful.

While knowledge of Zorro II PIC design will also be useful, such experience mainly applies to
the AUTOCONFIG sections of a PIC design. The signals and design problems for the Zorro III
bus are substantially different than for Zorro II. Zorro III PICs are expected to run considerably
faster than those for Zorro II, leading the circuit designer to faster TTL logic families and more
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"The curtain rises on a vast primitive wasteland,
not unlike certain parts of New Jersey."

-Woody Allen



use of fast PAL devices. The additional speeds coupled with 32-bit buses will also lead the
circuit board designer to multi-layer boards and more critical routing problems. While the Zorro
II bus and most Zorro II designs are mainly synchronous, the Zorro III bus is asynchronous.
Zorro III designs will typically be either fully asynchronous or self-clocked synchronous with
proper attention to stable synchronization with the bus.

1.2 A Few Words About AUTOCONFIG

If past history is any indication, the first thing to mention about Zorro III PIC design is
AUTOCONFIG, the Amiga mechanism for linking hardware plug-ins with software such that
configuration jumpers for addresses are unnecessary, and device driver installation is trivial to
even a novice user. And the first thing to say to a hardware designer about AUTOCONFIG is
Don’t Panic. More than any other issue, the AUTOCONFIG system seems to have confused
Zorro II PIC designers. But there’s absolutely nothing to fear about AUTOCONFIG; it is a very
simple concept and very simple to implement as an integral part of any PIC’s design.

The concept of configuration hasn’t changed for Zorro III, and the implementation is very much
the same as for the Zorro II bus. Extensions have been provided for a few Zorro III advanced
features, and a few extra things were added to the specification to make the design of a 32 bit
PIC as easy as possible. Other than that, if you know Zorro II configuration, you’ll pick up
Zorro III configuration almost instantly. Chapter 2 walks through the creation of an
AUTOCONFIG circuit for Zorro III and discusses the basic logic likely to be in place on any
Zorro III card.

1.3 Design Example Goals

The goal of this example is to design a memory card for the Zorro III bus. While A3000 users
won’t be running out of motherboard memory (up to 18 Megabytes) quite as fast as A2000 users
did, there’s already an emerging need for massive memory in Amiga computers. This RAM card
meets the following goals:

• Provides a fully asynchronous design example
• Uses the same ZIP memories as the A3000
• Supports up to 8 Megabytes using 256Kx 4 DRAMs, up to 32 Megabytes

with 1M x 4 DRAMs.
• Hopefully functions as a realtively clear design example

And, of course, this is a fully functional design tested to the best of our ability at the time of this
writing.
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CHAPTER 2
AUTOCONFIGTM LOGIC DESIGN
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"Logic is in the eye of the logician."
-Gloria Steinem

Every PIC design has a few things in common, most noticably an AUTOCONFIG circuit. While
such logic can pretty much be created by rote, an optimal design always will incorporate the
AUTOCONFIG and other Zorro III bus logic naturally into the main design. While this chapter
concentrates on the AUTOCONFIG logic, it will cover all of the standard logic elements of any
Zorro III design in a sensible order.

Throughout this and the following chapters, references to the schematic pages in Appendix 2 will
be. Page one of the schematics is found on page A-13 of this document, and there are six
schematic pages. To make things simpler, these will be referred to as S-1 through S-6.

2.1 Bus Buffers

Just like with Zorro II, all Zorro III designs require a number of buffers on the bus logic signals.
No PIC may load any bus signal with more than two F-series equivalent gates, and of course
outputs from the PIC must be able to drive the bus properly. Any unbuffered signal used by a
PIC mut be used close to the bus connector; if a signal trace is longer than a few inches, it must
be buffered. In addition, due to the dynamic nature of the high-order Zorro III address lines,
some or all of these address lines must be latched for the duration of the bus cycle.

The buffering/latching arrangement is shown on S-1. Since this is a slave-only board, address



lines are input-only. Addresses A31-A8 are transparently latched by 74F373 parts, the latch
taking place when /FCS is negated. The transparent latching allows the address comparator to
take advantage of the bus’s address setup time, important for matching to the board’s assigned
address as quickly as possible. The circuitry shown here is the most straightforward, but in
operation, only A24-A2 are actually used once the board select is determined. Thus, a fast enough
comparator circuit can latch an address match rather than the high-order addresses if it saves on
circuit complexity. Since the low order addresses A7-A2 are static, they are simply buffered
coming into the RAM board. The extra buffers in that package are used in this design to buffer
/FCS and READ, two lines used in several places in this design.

Data buffering is quite simple; D31-D0 are buffered with bidirectional bus buffers. The data
direction and buffer enable signals are quite simple. The buffers point out toward the bus for
read cycles when the PIC is selected (/SLAVE asserted), in at all other times; this function is
contained in the U200 PAL. The output enable is asserted when the PIC is selected, the DOE
signal is asserted, and there’s no bus error; this function is contained in the U201 PAL. Because
the data bus tristates, I use centering resistors to keep it quiet when it’s not being driven. If this
design had been supporting Zorro II as well as Zorro III, an additional two data buffers and much
more complicated buffering logic, based on the SENSEZ3 line, would be required.
2.2 The AUTOCONFIG ROM
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Reg Bit Val Description

00 7,6 10 This indicates a Zorro III card.
5 1 The OS will link this as free memory.
4 0 No autoboot/diagnostic ROM.
3 0 Only one logical PIC here.
2-0 001 Using the extended size feature, this is a 32 megabyte board.

04 7-0 01010111 Commodore Product $53.
08 7 1 Hint to the OS that this is memory, not I/O

6 0 This board can be shut up.
5 1 Extended sizing being used here.
4 1 This must be 1, for 1.3 compatibility.
3-0 0001 Let the OS calculate the logical size of the memory.

0C 7-0 00000000 Reserved.
10 7-0 00000010 Manufacturer’s number, high byte.
14 7-0 00000010 Manufacturer’s number, low byte. Since this one is a Commodore board, it uses the

Commodore number.
18-3C 7-0 00000000 All of these are zeroed. This board does not contain a board serial number or

boot/diagnostic ROM.
40 7-0 N/A Reserved
44 15-0 CFGADDR This board uses the Zorro III configuration block. It accepts the configuration address as

a single write.
48 7-0 N/A Configuration is completely handled with register 44.
4C 7-0 N/A A write of any value will cause the board to shut up.
50-7C 7-0 N/A All remaining registers are reserved.

Table 2-1: Logical AUTOCONFIG Registers

The complete AUTOCONFIG ROM is implemented in PAL U200, shown on schematic page
S-2. The design of an AUTOCONFIG ROM is usually very simple, but it does require a
complete understanding of how the board is to be used by the system before it can be done.
Also, a Zorro III configuration ROM is similar to a Zorro II configuration ROM, with just a few
more options available, once the translation for the configuration space chosen is applied.
First of all, the board must be described. Obviously, this is a Zorro III memory board, and since



Address D31 D30 D29 D28

00 1 0 1 0
02 0 0 0 1
04 0 1 1 0
06 1 1 0 1
08 0 1 0 0
0A 1 1 1 0
12 1 1 0 1
16 1 1 0 1

OTHERS 1 1 1 1

Table 2-2: Physical ROM Registers

it’s my design, it’s also from Commodore. On top of that, it can be expanded up to 32
megabytes, and it can also be "shut up" if necessary. That’s pretty much the specification, now it
has to be translated into Zorro III ROM registers.The Zorro III Bus Specificationdescribes these
entries starting on page 8-1. The logical register assignments are illustrated inTable 2-1. The
table actually lists all of the configuration registers on the board (registers40-7Care reserved as
write registers, not read registers, but they’re mentioned here anyway).

The next step in the design process is to convert these bit assignments to actual logic. As
mentioned before, the configuration ROM is implemented as part of the U200 PAL. By design,
configuration ROMs fit nicely in a PAL in most cases. The Zorro II and Zorro III specifications
call for all read resgisters other than register00 to be inverted in their physical implementation.
Since most bits are logically "0", they’ll be physically "1", and "1" is the default output state of a
standard PAL. Also taking into account that each logical register is actually made up of two
physical registers, both of which assert data only on the D31-D28 nybble, the physical register
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mapping for all read registers is shown inTable 2-2. The actual PAL equations for this are on
page A-3. These are simply a set of equations, one for each data line, that take into account each
"0" in the above table, and are active only when the board is selected and not yet configured.

While it makes no difference to the equations for our ROM registers, it is a good idea to point
out here the differences in addressing these read registers. Zorro II boards must respond to the
configuration space $00E8xxxx, and all registers are mapped on word boundaries. Zorro III
boards can respond to the $00E8xxxx address as a 16-bit Zorro II device as well, but many
designs, including this one, will choose instead to respond to the Zorro III configuration space at
$FF00xxxx. A board responds to this address as a 32-bit device, and it actually need only
decode the high-order eight bits of this address; both of these facts can save considerably on the
amount of configuration logic necessary for some designs. In both configurations, the first
nybble of each register pair is at the offset from base address given by that register number. In
the Zorro II space, the second nybble is in the next logical word -- the register number plus two.
Zorro III instead maps the second register of the pair at $100 plus the register number. This may
sound like the two will be quite different in implementation, but as the example PAL U200



illustrates, if I map A8 as A1 in the equations, all ROM equations will be written the same for
either configuration space. Using this feature and a multiplex of A8 and A1 based on the
SENSEZ3 signal can help simplify the design of a card that adjusts to both Zorro II and Zorro III
buses.

2.3 The AUTOCONFIG Registers

This design supports two writable configuration registers, the 16-bit configuration address
register44 and the shutup register4C. Recall that configuration address registers are written in a
pattern that allows the designer to choose nybble- or byte-wide configuration latches for Zorro II
configuration space or byte- or word-wide configuration latches in Zorro III configuration space.
Since Zorro II space is only sixteen bits wide and writes must line up consistently, this design
would have to latch configuration address bits A31-A24 on a write to register44, followed by
configuration address bits A23-A16 on a write to register48. Even though a large board such as
this never needs to look at A23-A16 for its configuration address (Zorro III PICs always live at
their natural boundaries), a board configured in Zorro II configuration space isn’t configured
until a write to register48. Since this board instead responds to Zorro III configuration space,
the entire sixteen bit configuration address can be written at once with a write to register44, and
that is also the signal indicating that configuration of the board is complete.

The register logic starts with the same PAL, U200, as used for our ROM logic. This PAL has the
important low-order addresses going to it, so it’s a natural for this. In this design, there are two
signals created for register support in PAL U200. The first of these is a signal called /PRECON,
for pre-configuration. The board isn’t fully configured until the end of the Zorro III cycle that
writes either register44 or register4C; /PRECON is asserted during this last write cycle as soon
as data is valid on the bus, and it stays latched until the next reset. The other signal in U200
that’s of immediate importance is the CFGLT signal. This line is responsible for latching the
configuration address on the bus if this final write is a configuration and not a "shut up" request.
This is an active high signal in an inverted-output PAL, so the equation can’t be very
complicated. This line is asserted when the board is selected, /PRECON is asserted, and A3 is
low, which is true just after /PRECON is asserted for a write to44. Like the /PRECON line,
CFGLT latches until the next reset. The remainder of the register logic is elsewhere.

The rest of the configuration control logic is in PAL U201, which creates both the /CFGOUT and
/SLAVE signals, two signals that must be driven out to the backplane. The /CFGOUT signal is
pretty simple. Normally, it is asserted at the end of a cycle in which /PRECON and /CFGIN are
asserted, and latched asserted as long as PRECON also stays asserted. It also gets asserted if
/CFGIN is asserted along with the SENSEZ3 signal negated. This latter condition indicates that
the board has been placed in a Zorro II backplane. This board can’t support Zorro II
configuration, so it automatically "shuts up", an action required by the Zorro III specification.
Note that the SENSEZ3 signal is called /Z2SHUNT in the PAL equations on page A-5.

The next basic piece of the configuration logic is the configuration latch, which in this case is the
74F374 at U202. This edge-triggered latch is triggered by the rising edge of CFGLT, which is
asserted when the board’s configuration address is written and data is valid on the data bus. At
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the end of the configuration address cycle, /CFGOUT is asserted, the address as latched is now
fed into the /SLAVE generation address comparator, and the board is fully configured in
hardware. Since this is an autosized memory board, system software generally will calculate its
size and link it into the free memory pool before the next board is configured, though this
operation can of course change as the configuration software changes.

2.4 The SLAVE Logic

Naturally, this brings up the question of how the /SLAVE logic is implemented. Every Zorro II
or Zorro III board must assert its private /SLAVE line when it is responding to a bus address. In
every case, two addresses must be supported; the configuration space address prior to
configuration, and the software-assigned address after configuration. The method used in this
example is quite similar to techniques used in many Zorro II designs, and is only slightly more
complex.

The core of a /SLAVE circuit is always an address comparator of some kind. In every case, the
bus address must be compared with the address to which the board responds. The main
comparator in this circuit is the 74F521 at U203. It compares seven bits of possibly-latched bus
address, A31-A25, with the corresponding bits on the configuration address latch. This
comparison is called /MATCH on the schematics. Prior to configuration, the 74F374 is
tri-stated, and the outputs going to the comparator are all pulled high, getting the card well on the
way to responding to the $FF00xxxx configuration space.

The twist in this design is that there is a bit more to this comparison than just a simple
comparator can handle. First of all, the board needs to look at a full eight bits of the $FF00xxxx
address to properly respond during configuration, but only seven bits of address once the board is
configured as a 32-megabyte board. This PAL U201 helps out by requiring A24 tobe high for a
/SLAVE response prior to configuration. Zorro III memory cards must monitor the function
codes FC0-FC2. PICs must only respond to a valid User or Supervisor mode Code or Data space
access; such accesses are given as the exclusive-or of FC0 with FC1. The /SLAVE signal is
always qualified with the Zorro III full cycle strobe /FCS, and it can occur in only two cases. In
the first case, a qualified match occurs, the board is unconfigured, and /CFGIN is asserted. In the
latter case, a qualified match occurs, the board is configured, and CFGLT is asserted. As
previously mentioned, if the board is configured but CFGLT is negated, the board has been "shut
up" rather than configured.

And that is all there is to the basic configuration logic. As demonstrated with U201, it is usually
quite reasonable to incorporate this logic in with other board logic, where it’ll fit the most
efficiently. AUTOCONFIG logic is intended to make it easy on the designer as well as the user;
it’s not supposed to scare anyone.
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CHAPTER 3
MEMORY SYSTEM DESIGN

This chapter discusses the actual DRAM logic design for this project. The information here is
going to be far less useful for the designer trying to learn about Zorro III designs, since this is the
part of the board design which is very specific to the task at hand, a DRAM board. However,
there may be some ideas of a more general applicability. If nothing else, it shows that a fully
asynchronous DRAM design can be done rather simply with a little planning.

3.1 DRAM Refresh

The most complex part of any hand-made DRAM circuitry is very likely to be the refresh
circuitry. Without refresh, DRAM would look pretty much like static memory with a
multiplexed address bus (and the folks at TI and National Semiconductor would be selling quite
a few less DRAM controllers). While there’s nothing wrong with off-the-shelf DRAM
controllers, it’s really not very difficult to "roll your own".

3.1.1 Refresh Arbitration

If you beilive that DRAM boards are difficult to design, and that refresh is the most difficult part
of such a design, then you must believe that refresh arbitration is the most difficult part of the
refresh logic. So I’ll discuss that part first, and the rest of the circuitry in this chapter will then
be simpler.
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In this design the refresh arbiter is incorporated with the /SLAVE generator. Refresh arbitration
takes place in U201 and is by the nature of the Zorro III bus necessarily asynchronous. A refresh
request can come in at any time, and must be serviced as soon as possible without interrupting a
cycle. There are three refresh cases: a request outside of a cycle, a request during a cycle to this
card, and a request during a cycle to another card. These cases are illustrated inFigure 3-1. The
problem with any asynchronous refresh arbiter is that it’s impossible to determine at a single
point if a cycle is starting or not. This can be though of as a potential race condition between the
refresh request and the start-of-cycle. So the solution is to create two sampling points, one to
give the go-ahead for a refresh cycle, the other to give the go-ahead for a memory cycle.
For the latter, you can use the /SLAVE signal. Virtually everything that happens on a simple
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Zorro III slave card is gated with /SLAVE. So in order to safely arbitrate refresh, we generate a
refresh acknowledge signal, /REFACK, which will always be asserted safely before or safely
after /SLAVE. In order to get there before /SLAVE, the /REFACK line will not be asserted
outside of a Full Cycle if the /MATCH line is asserted. Since /MATCH and /FCS must both be
asserted in order to create /SLAVE, and /FCS always follows /SLAVE, the /REFACK line is
guaranteed to get out of U201 prior to /SLAVE, should the refresh request some in just before
the PIC is selected. But once a board is selected on the bus, there’s no reason to hold off refresh
if it’s a different board being selected, so /REFACK can be asserted during the data time of some
other card’s full bus cycle. In either case, the refresh acknowledge is latched as long as refresh
request is held.

3.1.2 Refresh Counter

A simple refresh counter is implemented in PAL U306. Although the board supports both 256K
x 4 or 1 Meg x 4 DRAM, the actual per-row refresh time is the same; the former part requires a
512 row refresh in 8ms, the latter a 1024 row refresh in 16ms. This amounts to one refresh
request every 15,625ns. However, to build in support for burst mode with page-mode or static
column DRAM, we use the TRAS,MAX time here, which is 10,000ns. The PAL counter actually

Figure 3-1: Refresh Arbitration

/REFREQ

/REFACK

/REFCYC

/FCS

/MATCH

/SLAVE

DOE



counts 140ns clocks, so a count of 71 clocks will get us up to 9,940ns, close to the desired
10,000ns. If burst mode support weren’t considered here, a count of 111 clocks could be used in
the counter.

The counting is quite simple; the counter goes from zero to its terminal count, then asserts the
/REFREQ signal. It then holds onto the /REFREQ signal until a refresh cycle is under way, as
indicated by /REFCYC. The /REFCYC line will reset the counter for the duration of the refresh
cycle. The process starts over once the refresh cycle is complete.

The clocked counter is used here simply because it’s very easy to understand and, being fully
digital, always works the same way. It could have been a simple one-shot or 555 timer circuit, as
long as component tolerances don’t allow the timer to drop below the required refresh frequency.
You may recall reading of the evils of such timers in DRAM hint books. While they aren’t
optimal, due to the aforementioned component tolerance problems, that’s not why you were
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Figure 3-2: Refresh Cycle

warned off. The main reason for avoiding such timers in most DRAM designs is the problem
you’re likely to have with an asynchronous refresh request. Since we have already solved the
problem of the asynchronous refresh request here, no asynchronous approach is inherently evil to
this design.

3.1.3 Refresh Cycle

The actual refresh cycle, illustrated inFigure 3-2, is a CAS-before-RAS refresh, and all memory
on board is refreshed at the same time. As soon as a refresh cycle is active (/REFCYC asserted),
PAL U300 will assert the /REFCAS line. /REFCAS will in turn cause the CAS control PAL,
U304, to drive all eight CAS lines. An active /CASDEL or /RASDEL will hold off the assertion
of /REFCAS, thus ensuring RAS precharge (TRP) in case the refresh is immediately following a

/REFCYC

/REFACK

/REFREQ

/CASOUT

/CASDEL

/CAS

/RAS

/RASDEL



Figure 3-3: Memory Access

memory cycle. The /REFCAS line is latched by /MUX until /RASEN comes along, so that it’s
no longer dependent on /REFACK. The /REFACK line will be negated some time before the
end of the CAS-RAS cycle; its main use here is to qualify the start of a refresh cycle. Once the
/RASEN is asserted, /REFCAS is latched by the negated /RASDEL, as is /RASEN.

The /CASOUT line of U300 is also driven at the start of the refresh cycle. This of course comes
back to U300 as the /CASDEL signal. The refresh /RASEN is driven as soon as /CASDEL is
asserted, thereby separating refresh CAS and refresh RAS by roughly the CAS delay time. The
/RASEN line drives the buffered /RAS lines to either bank of memory. Once asserted, /RASEN
is held until /RASDEL wraps back in. The refresh cycle is held until /RASDEL once again is
negated, thus ensuring TRP for the refresh cycle, in the event that this refresh is taking place right
before a memory cycle.
3.2 DRAM Access
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The DRAM read/write access duing a normal memory cycle uses mainly the same parts for
RAS-CAS controlling, along with a few additional bits and pieces to control memory banking.
The logic supports several speeds of DRAM, selection being made via jumpers on the tap delays
used for RAS and CAS timing. Either the 256Kx 4 or 1 Megx 4 parts can be used, and a
jumper is provided to allow the necessary banking modification for this. Finally, hooks are in
place for burst-mode (Multiple Transfer Cycle) support of either page or static column DRAMs,
but at the time of this writing, Zorro III burst mode is not yet implemented in the A3000 Bus
Controller, so this feature can’t yet be tested.
3.2.1 Memory Cycle

/FCS

/SLAVE

DOE

/DSn

/RAS

/RASDEL

/MUX

/CAS

/CASDEL

/DTACK



The basic memory cycle is started by U300 when /SLAVE is asserted and no refresh cycle is
acknowledged or in progress. The cycle start will be held off until /RASDEL is negated, to
ensure TRP after a refresh or a previous memory cycle. The assertion of /RASEN starts the cycle,
and /RASEN is held at least until /DTACK is asserted. Dropping /RAS before cycle’s end lets
us gets an early start on RAS precharge, and by /DTACK time the appropriate /CASXN are
certain to have fallen, assuring that data will be held through the cycle’s end. Since /RASEN
creates /MUX, however, this optimization can’t be used for SCRAM parts, since that could result
in a column address change before cycle’s end (SCRAMs don’t latch the column address). The
100ns tap delay U301 sets the RAS delay, and J300 provides taps for 100ns, 80ns, and 60ns
DRAM. The /RASEN line is buffered, as previously mentioned, by two gates from the 74F244
at U303, one creating /RASL for the lower bank of 32 memories, the other creating /RASH for the
upper bank of 32 memories. U303 also buffers the first tap from U301, which becomes /MUX,
the line used for multiplexing the DRAM addresses.

The U300 PAL also creates the enable for CAS, the /CASEN line. This is based on /RASEN,
DOE, and /MUX asserted, and it’s held through the end of the cycle, until /DTACK is negated.
The /CASEN line qualifies CAS, but it doesn’t necessaily start CAS for a full cycle; further
consideration of CAS generation is done elsewhere. There are hooks in U300 to change the
operation of /CASEN in the case of Multiple Transfer Cycles and either page-mode or static
column DRAM. There’s logic intended to support this in the PAL equations, but it has not yet
been tested.

Most of the CAS generation is handled in U304, the CAS generation PAL. The CAS strobes are
used to select between two banks of DRAM, and to select the appropriate bytes to access during
write cycles; this is covered in detail in the next section. Other than qualifiying by bank and
byte, the CAS generation PAL qualifies all CAS with READ. During read cycles, all four bytes
in the accessed memory bank are activated, in order to support caching of this memory. Write
cycles, on the other hand, are qualified with the appropriate data strobe, to assure that data is
valid before a write-cycle CAS latches write data. All CAS strobes are of course qualified by
/CASEN. They’re also all qualified with /CADDR, which is a strobe that assures column
address setup time to CAS. This is just the 60ns tap from the RAS timing tap delay. The 40ns
tap would just about make it, but leaves absolutely no margin. Since column access is rarely the
limiting factor, the 60ns tap is used, for a 30ns worst case /MUX to /CADDR delay, assuming a
5% per-tap tolerance on the tap delay.

3.2.2 Bank Selection

The refresh cycle’s CAS-before-RAS logic, along with the fact that the whole board is refreshed
at once, keeps things pretty simple when refresh is taking place. A normal memory cycle,
however, must take into account the memory devices that actually need to be addressed. This
discussion is concentrating mainly on the 256Kx 4 devices, but the same principles apply to the
1M x 4 devices as well.

The basic memory unit is a 4-bit DRAM, and thus two devices are necessary to form a byte, the
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basic unit of interest to the Zorro III bus. This makes the smallest chunk of 32 bit memory a one
megabyte chunk. So for the total of eight megabytes, we’ll have eight 1- megabyte memory
banks. We want to keep RAS common among all DRAM, so it can’t be used to control banking
at all. The best thing to do is divide and conquer, and that’s just what we do; find something to
select between these various natural divisions.

As mentioned previously, the /CAS strobes are used to select individual bytes within a one
megabyte bank of memory. This is a very natural use of /CAS, since it’s not needed until late in
the memory cycle, and the data strobe lines and write data aren’t valid until later in the cycle
either. The CAS PAL could easily generate a /CAS0-/CAS3, based directly on corresponding
data strobes /DS0-/DS3. However, there are twice the number of output lines on this PAL device
as needed for four /CAS lines, and we’re still looking for a banking mechanism. With the
addition of the MEG4 signal for memory sizing and the address lines A22 and A24, the PAL
comes to drive eight total /CAS lines, controlling not only byte enables but the most significant
RAM bank. For 256Kx 4 parts, A22 chooses between two 4-megabyte banks. For 1Mx 4 parts
A24 chooses between two 16-megabyte banks.

Within the 4-megabyte banks, another banking control is used. In this case, most of the work is
done by the 74F138 decoder at U305. This device creates a read enable for one of four device
during a read, or a write enable for one of four devices during a write. The selection of device is
controlled by the BK0 and BK1 lines from U300. BK0 and BK1 are simply A20 and A21 for 256K
x 4 support, or A22 and A23 for 1M x 4 support. That’s all there is to bank selection. Zorro III
autosizing requires board memory to be added from the lowest to the highest address on-board,
but there are no hardware requirements for this.

3.2.3 Address Multiplexing

There’s nothing really complicated about the address multiplexing on this card, but it should be
explained. All of the multiplexing is done with 74F258 multiplexers, and all of them are
multiplexed by the /MUX signal. The first four or sixteen megabytes of memory is driven by
/MAL 0-/MAL 9, the second by /MAH0-MAH9, but the multiplexing scheme is identical for both
banks. When /MUX is high, the row addresses /MA0-/MA9 are set to the inverted A10-A17, A19,
and A21, respectively. For /MUX low, the column addresses /MA0-/MA9 are set to the inverted
A2-A9, A18, and A20, respectively. This organization may seem strange, but it makes A2-A7 (the
Multiple Transfer static addresses), the low-order column addresses, so that Multiple Transfer
Cycles can be supported via fast page or static column DRAM. This banking scheme also makes
/MA9, which is used only by 1Mx 4 DRAM, a no-op for 256Kx 4 DRAM, since BK0-BK1 look
at A20 and A21.
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CHAPTER 4
GOING FURTHER

In the general case, you can always do better. When specifics get involved, though, you may not
always want to. In the specific case of this design example, you can certainly do a bit better.
And if you want to make this example into a real product at some point, you should do better
(thanks to this article, anyone can do at least this well just by copying).

Currently, with the Revision G Buster chip in a 25MHz A3000, this design with 80ns DRAM is
running at just over half the speed of A3000 local bus memory. But part of that is the current
Zorro III implementation -- this same configuration is running only about 15% slower than our
prototype 50ns SRAM board! You can fully expect the Level 2 Buster chip to improve cycle
times considerably, as well as supporting the faster MultipleTransfer Cycles. So, as I said, you
can always do better.

4.1 Designed-In Enhancements

While not quite in the "quick and dirty" category, this example went from start to final working
version in about five working days. Most of the careful design work was spent on getting the
AUTOCONFIG logic correct and understandable, since that’s the most likely part of the design
to be replicated in other Zorro III PICs. The actual DRAM part of it was designed, above all
else, to work right the first time, since there really wasn’t any time to revise the board. Because I
felt that presenting a design example at a Developer’s Conference without a working sample in
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hand would certainly be a cause for developers worry about the design’s quality. So this card
was designed to work, above all other concerns.

4.1.1 The Experimenter’s Board?

As it turns out, the original concept for the DRAM memory cycle worked fine, but the refresh
logic has a rather serious flaw that hadn’t been considered originally. When the design was
created, the /REFACK signal was seen as the refresh control that stays valid for the entire refresh
cycle, while the /REFCYC signal, then called /REFHOLD, was an end-of-cycle signal used to
control the RAS precharge delay. That didn’t work, and fortunately, the current mechanism
could be created by changing the PAL equations, so the board was working a day after it was
built up without a single cut or jumper.

However, the original memory cycle left a bit to be desired. Initially, the CAS enable didn’t go
out until the full RAS time had been met (eg, /RASDEL is asserted). This worked, but made
CAS quite a bit later than it could have been. With a single extra wire, the CAS PAL was
modified to hold off CAS until column addresses became valid. This allowd the memory timing
PAL to enable CAS as soon as possible, and resulted in a 15% speedup.

The point here is that the design, as presented, isn’t completely fixed. There are a considerable
number of things one could do to change the memory cycle by playing around with PALs. It’s
conceivable that even without any additional PCB modifications, the memory cycle efficiency
could be enhanced.

4.1.2 Multiple Cycle Transfer Support

On enhancement that’s definitely supported, though untested, is the Zorro III Multiple Transfer
Cycle. PAL U201, when enabled by J200, will request Multiple Transfer Cycles, and drive the
/BURST line if the bus master acknowledges this with /MTCR. The memory controller PAL
U300 attempts to create proper CAS cycles for a burst transfer, modified by the J303 jumper for
fast page or static column mode DRAM. And, as previously memtioned, the address
multiplexing and refresh timeout are designed to support this burst mode as well. Hopefully this
logic would work with a Level 2 Buster that can handle bursts, but it hasn’t been tested at the
time of this writing.

4.2 Modification Ideas

Opening up the design to a few PCB modifications can make things much more interesting. Of
course, the ultimate modification might be to throw out the complete DRAM logic here and
simply go to an off-the-shelf DRAM controller. While there’s nothing wrong with that
approach, and modern DRAM controllers even have an asynchronous operating mode that would
work very nicely with Zorro III, there is still some performance that can be squeezed from this
basic design. Most of these might have been incorporated with an extra day or so worth of
design time.
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4.2.1 Tighter RAM Cycles

The entire memory cycle run here is a bit less than optimal. Part of the problem is that the
memory timing and CAS control PALs don’t always have the same idea of when CAS should
start. If the controller has a very good idea of when data is going to become valid, whether
driven by TRAC or TCAS, the /DTACK line can be driven optimally. And, of course, the cycle
can be fully TRAC driven, which is usually going to be the fastest possible cycle.

Another less than optimal feature of the design is the TRP assurance logic. In order to manage
TRP between a cycle immediately following refresh or refresh immediately following a cycle, all
new cycles are held off until /RASDEL is negated. This works just fine, but the time between
/RAS negated and /RASDEL negated is very close to the TRAS time. For all standard DRAMs,
the TRP time is less, sometimes much less, than the required time for TRAS. The CAS precharge
time is never a problem for full cycle to full cycle operation, and unlikely to be a problem for
Multiple Transfer Cycles.

The built-in support for Multiple Transfer Cycles can also be improved. The main problem for
such burst cycles that doesn’t crop up elsewhere is the TRAS,MAX time of most DRAMs in burst or
static column modes. This board makes sure that a burst transfer can’t exceed this limit by
setting the refresh time to something just under TRAS,MAX. When refresh comes along, it causes
/MTACK to be negated at the appropriate subcycle boundary, thus making the full cycle
terminate so that refresh can take place. This has two shortcomings. First of all, it makes refresh
related slowdowns over 50% more likely than necessary. Additionally, the start of the burst
cycle isn’t synchronized with the refresh counter, so a burst can be interrupted by refresh long
before necessary. Ideally, separate counters could be added for burst and refresh timeouts.
Alternately, the refresh counter could be modified to change its count based on whether or not a
burst cycle is under way.

4.2.2 Read/Write Optimizations

A basic principle of Zorro III slave optimization is that read and write cycles can benefit from
different treatments. In this example, for instance, CAS can be driven before the DOE signal is
received for read cycles, as long as column addresses are valid. If data can be valid on the card’s
data bus prior to DOE, then the cycle can be acknowledged only one buffer enable time after
DOE is received. For READ sensing in the DRAM timing PAL (U300), the addresses used for
the DRAM banking logic can easily be moved into another device, freeing up about seven pins.

Write optimizations would take a bit more logic, but they are possible. The best write
enhancement would be data bus latches. By replacing 74F245 buffers U104-U107 with some
74F646 bidirectional latching buffers, and associated control logic, writes can be made very fast.
The falling edge of the /DSN lines can latch data to the board and effect an immediate /DTACK,
thereby possibly saving some of the TRAS and TCAS time. In fact, this could also help reads, since
a latched data bus would allow the DRAMs to shut off as soon as data’s latched, rather than at
the end of the Zorro III cycle.
4.2.3 Standard DRAM Tricks
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As with any DRAM design, the standard DRAM tricks apply here. With a bit of logic
duplication, doubling up on the RAS-CAS and refresh logic, memory bank interleaving can be
used to hide the RAS precharge time in most cases. Multiple Transfer Cycles can be though of
as an automatic page detect, so conventional page mode or static column optimizations may not
be all that useful. Then again, the Zorro III page is only 256 bytes, so perhaps a larger page
could be of some help. Nybble mode memories won’t really be of much use; although any burst
cycle resulting from 68030 burst mode will be nybble compatible, there’s no guarantee of linear
addressing within a Zorro III burst cycle.

Always keep in mind the future. The Zorro III bus implementation that’s currently on the
A3000, as mentioned before, is already slated to improve. In the future memory will go faster on
the bus than it does now, even if motherboard clocks don’t go beyond 25MHz. And we expect
future Zorro III machines will be running a faster Zorro III bus, going beyond what’s possible in
an A3000 even tomorrow.
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CHAPTER 5
ADDITIONAL ZORRO III ADVICE

Going beyond this specific example just a bit, there are a few good things to think about when
working on any Zorro III design. A large portion of this is just plain good design sense. Those
without much design sense or experience should read this chapter twice, and probably learn more
about the first two points from some outside materials.

5.1 Watch Those Synchronizations

The foremost thing to be concerned about when designing for Zorro III is the fact the the bus is
running asynchronously. Some simple designs will not find this to be any problem. Obviously a
simply I/O chip with a 100ns access time can be timed with a delay line, keeping things very
simple. At the other end of the spectrum of complexity, clever clocked VLSI chips often
internally synchronize things, much the way the 680x0 processors handle their "asynchronous"
inputs.

If, however, you’re doing your own TTL level design, such as this one, be very careful. Fully
asynchronous circuits can be very tricky to do correctly, missing a strobe by a nanosecond or so
can be fatal, and it may only happen every so often. The best bet is to use overlapping signals
and feedback to create new signals, andnevercount on delays through PALs or TTL to provide
repeatable delays. Tap delays, while not perfect, are reasonably accurate, and can be used to
design reliable circuits.
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Synchronous design is usually easier, and therefore more reliable for the average designer to
create. The problem here is coupling the synchronous design to the Zorro III bus. Such a design
will have its own clock, but that clock can’t reliably sample any Zorro III signal on a single edge.
Double clocking any important Zorro III inputs with high quality flip-flops that go to clocked
logic is a necessity. The problem you’ll have with single clocking, metastability, won’t always
be immediately noticed, but it’s going to be there. Better to avoid it from the start.

5.2 Design for Speed

Zorro III cards currently run around four times faster than Zorro II cards, and the limit, at least in
theory, is over ten times faster. That should be a good indication that Zorro III designs are more
sensitive to problems than Zorro II cards. To further aggravate the situation, you may not see
any problems until faster Zorro III bus masters come along. So proper design practices are your
best option. There are three main design problems that typically come up.

The speed of the design is one problem area, though it’s not that much of a problem if you’re
up-to-date on the logic of the 1990s. While FCT and F series TTL are good for buffers and small
logic functions, most fast designs these days rely heavily on programmable logic, mainly PALs.
A single level of PAL logic can replace several levels of TTL, and they’re aways pushing PAL
speeds just a little bit more. Larger PLDs and gate arrays (programmable or custom) are always
handy for complex circuits, providing they’re fast enough.

Noise problems are partially a result of the higher speeds involved. Eliminating such problems is
achieved via a combination of circuit design and PCB layout. For noise reducing design, you
need bypass capacitors of various sizes in the appropriate places. Every TTL part should have a
small capacitor; we generally use something in the 0.1µF-0.22µF range. For DRAM or other
surging parts, we use 0.33µF or greater. It’s also a good idea to have a high frequency bypass,
maybe 0.01µF or so, and a couple of larger capacitors, something in the 10µF-100µF range,
randomly distributed around the design. More noise reduction can be achieved with good signal
termination. Small value series termination resistors, something in the 22Ω-68Ω range works
well; the values must often be tuned to the design. Tri-statable buses often benefit from some
kind of parallel termination; pullups, pulldowns, or centering resistors depending on the design.

The other half of the noise problem is solved in PCB layout. Zorro III boards are almost
certainly all multi-layer boards. Trace lengths are to be kept as short as possible, especially those
on the bus side of a card; it’s extremely important to minimize the noise that a card introduces to
the bus. Fast and noisy signals, such as clock lines or fast control signals, should generally be
given priority when routed. Component placement is also a very important job; the lengths of
interconnects is directly affected by this planning. If the circuit designer isn’t doing the board
layout personally, he/she should develop a good working relationship with the PCB designer.
Any work done on keeping the design quiet will very likely be time well spent; it’s likely to help
out in reliability, operation with other boards in the system, and government noise certifications
such as FCC or FTZ.

5.3 Follow the Specifications
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Let’s say it once again! Any current Zorro III bus implementation is likely to be far more
relaxed than the bus specification. That’s going to eventually change. A proper design built
today should work in tomorrow’s 50MHz superAmiga, a substandard design could fail on an
A3000 with the Enhanced Buster chip. Build in your long term viability at the design stage and
save a great deal of potential future grief. You aren’t going to get tested on your design for some
time to come.
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APPENDICES

A.1 PAL Equations

The following section contains the complete PAL equations for the five PAL devices in the
BIGRAM design. All the equations are in the CUPLTM format, but should be easily translated to
any other format if required. This format uses the & character to represent AND, the # symbol to
represent OR, the $ symbol for XOR, and the ! symbol for negation. Standard outputs are
indicated simply by name, registered outputs are indicated with the .D extension, and output
enables are indicated with the .OE extension. The CUPLTM compiler minimizes equations where
possible; should any equations here appear to be too large, rest assured that they will actually fit
in the specified PAL.
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A-2 Appendices

PARTNO U200 ;
NAME U200 ;
DATE May 30, 1990 ;
REV 2;
DESIGNER Dave Haynie ;
COMPANY Commodore-Amiga ;
ASSEMBLY BIGRAM ;
LOCATION U200 ;

/************************************************************************/
/* */
/* Zorro III BIGRAM Configuration Control */
/* */
/* This device acts as configuration ROM and configuration */
/* register controller. */
/* */
/************************************************************************/
/* */
/* DEVICE DATA: */
/* */
/* Device: 16L8-15 */
/* Clock: NONE */
/* Unused: NONE */
/* */
/************************************************************************/

/* INPUTS: */

PIN 1 = !SLAVE ; /* Board selected? */
PIN 2 = !RST ; /* Board reset */
PIN 3 = !DS3 ; /* High order data strobe. */
PIN 4 = READ ; /* Read cycle strobe */
PIN 5 = A2 ; /* Bus Addresses. */
PIN 6 = A3 ;
PIN 7 = A4 ;
PIN 8 = A5 ;
PIN 9 = A6 ;
PIN 11 = A1 ; /* This is really A8. */
PIN 16 = !CFGOUT ; /* Board configured? */

/* OUTPUTS: */

PIN 19 = D28 ; /* Configuration data ROM nybble. */
PIN 12 = D31 ;
PIN 13 = D30 ;
PIN 14 = D29 ;
PIN 15 = DBDIR ; /* Data buffer direction. */

/* BIDIRECTIONALS: */

PIN 17 = !PRECON ; /* Preconfiguation strobe. */
PIN 18 = CFGLT ; /* Configuration address latch. */

/** INTERNAL TERMS: **/

/* Mapping A8 as A1 here makes the register pairs line up just
as they would under Zorro II configuration. */

field addr = [A6..1];

/** OUTPUT TERMS: **/

/* The configuration ROM is created here. The logical ordering
of it is as follows:

REG 76543210

00 10100001 Zorro III, autolink, 32 megabytes
04 10010010 Product $53
08 10110001 Extended Memory board, supports

Shutup, autosized in software.
0C 00000000 Reserved
10 00000010 Manufacturer’s code (C-A)
14 00000010
18-3C 00000000 Zeroed options/reserved.

The autoconfiguration specs call for every readable register
except for 0 to be inverted in the physical implementation.
So the resulting map is:

A.1.1 Autoconfiguration Control PAL

This device is responsible for providing the AUTOCONFIGTM ROM, registers, and data buffer
direction control. This is to be programmed into a 15ns 16L8 or equivalent device.



ADDR D31 D30 D29 D28
00 1 0 1 0
02 0 0 0 1
04 0 1 1 0
06 1 1 0 1
08 0 1 0 0
0A 1 1 1 0
0C 1 1 1 1
0E 1 1 1 1
10 1 1 1 1
12 1 1 0 1
14 1 1 1 1
16 1 1 0 1

OTHERS 1 1 1 1

Only the Zero terms are explicitly entered here; anything not specifically
driven low will be driven high.
*/

!D31 = addr:02
# addr:04
# addr:08;

!D30 = addr:00
# addr:02;

!D29 = addr:02
# addr:06
# addr:08
# addr:12
# addr:16;

!D28 = addr:00
# addr:04
# addr:08
# addr:0A;

[D31..28].OE = SLAVE & !CFGOUT & READ;

/* This signal is driven to indicate an address latch request.
Note that the board uses 16 bit configuration write feature
to configure all at once; this isn’t available in the Zorro II
configuration space. */

CFGLT = SLAVE & PRECON & !A3
# CFGLT & !RST;

/* If the board is told to shut up or configure, this line is
asserted and held through reset. The logical SHUTUP line
is PRECON & !CFGLT, once FCS is negated. */

PRECON = SLAVE & DS3 & !READ & addr:4C
# SLAVE & DS3 & !READ & addr:44
# PRECON & !RST;

/* This controls the data buffer direction between the PIC’s
local bus and the expansion bus. */

DBDIR = SLAVE & READ;

A-3BIGRAM 8/32



PARTNO U201 ;
NAME U201 ;
DATE May 30, 1990 ;
REV 3 ;
DESIGNER Dave Haynie ;
COMPANY Commodore-Amiga ;
ASSEMBLY BIGRAM ;
LOCATION U201 ;

/************************************************************************/
/* */
/* Zorro III BIGRAM Board Control */
/* */
/* This device controls the main features of the BIGRAM board. */
/* */
/************************************************************************/
/* */
/* DEVICE DATA: */
/* */
/* Device: 20L8-10 */
/* Clock: NONE */
/* Unused: 22(O) */
/* */
/************************************************************************/

/* INPUTS: */

PIN 1 = !MATCH ; /* Address match from comparator. */
PIN 2 = CFGLT ; /* Configuration latch. */
PIN 3 = !PRECON ; /* Board was configed or shutup. */
PIN 4 = !FCS ; /* Full Cycle Strobe. */
PIN 5 = !CFGIN ; /* Configuration chain in. */
PIN 6 = FC0 ; /* Function codes, don’t ignore these! */
PIN 7 = FC1 ;
PIN 8 = !REFREQ ; /* Refresh request from refresh counter */
PIN 9 = !Z2SHUNT ; /* Zorro II backplane bypass. */
PIN 10 = DOE ; /* Data enable. */
PIN 11 = !BERR ; /* Bus error, all off. */
PIN 13 = !REFCYC ; /* We’re in a refresh cycle. */
PIN 14 = !BRENB ; /* Burst/Multiple transfer enable. */
PIN 20 = !MTCR ; /* We’re in a multiple cycle. */
PIN 23 = A24 ; /* Latched bus address 24. */

/* OUTPUTS: */

PIN 15 = !DBOE ; /* Data buffer output enable. */

/* BIDIRECTIONALS: */

PIN 16 = !CFGOUT ; /* Board is configured. */
PIN 17 = !REFACK ; /* Refresh acknowledge. */
PIN 18 = !MTACK ; /* Multiple transfer acknowledge. */
PIN 19 = !SLAVE ; /* Board select. */
PIN 21 = !BURST ; /* This is a burst cycle. */

/** INTERNAL TERMS: **/

/* The valid board address consists of a comparator match and a valid
memory space. The valid spaces are as follows:

SPACE FC2 FC1 FC0
Reserved 0 0 0
User Data 0 0 1
User Program 0 1 0
Reserved 0 1 1
Reserved 1 0 0
Supervisor Data 1 0 1
Supervisor Program 1 1 0
CPU 1 1 1

This reduces to the equation used: FC0 XOR FC1. The external comparator
only looks at A31..A25, which is OK for normal operation (we’re a 32
meg board), but bad for configuration. So if we’re not yet configured,
A24 must be high for a select match.
*/

select = MATCH & (FC0 $ FC1) & (CFGOUT # A24);

A-4 Appendices

A.1.2 Board Control PAL

This device controls an assortment of board functions. It creates the /SLAVE, /CFGOUT, and
/MTACK signals for Zorro III. It creates the data buffer enable for the bus buffers, and the
burst-enable line used by the memory system. And it arbitrates DRAM refresh. This is
programmed into a 10ns 20L8 or equivalent PAL.



/* This indicates a normal board select; SLAVE starts the cycle, FCS
cuts it off quickly at the end. */

hit = SLAVE & FCS;

/* OUTPUT TERMS: */

/* This output controls the data buffer enable pins. Data buffers
turn on when DOE is asserted and the board is selected, they
turn off as quickly after a cycle ends as possible. */

DBOE = hit & DOE & !BERR;

/* This signal indicates that the board is configured. The board is
considered configured if actually configured, shut up, or placed
in a Zorro II backplane. It only responds if actually configured,
of course. This signal must only change at the end of a cycle, if
actually operating. */

CFGOUT = PRECON & CFGIN & !FCS & !DOE
# PRECON & CFGOUT
# Z2SHUNT & CFGIN;

/* This is the refresh acknowledge cycle. When the a refresh request
comes in, and the coast is clear, this line is asserted to start
the refresh machine. Determining when the coast is clear, eg,
arbitrating refresh, is the trick to all hand-made DRAM controllers.
This one works pretty simply. The coast is clear when there’s no
bus cycle happening, or when a bus cycle is happening but another
slave is responding. The trick is avoid races; FCS could be
changing just as REFREQ comes in. Therefore, the second half of
this arbiter is in the RAS cycle generation, which doesn’t start
until REFACK is negated and SLAVE is asserted. */

REFACK = REFREQ & !FCS & !MATCH
# REFREQ & FCS & !SLAVE & DOE
# REFACK & REFREQ;

/* The multiple cycle transfer acknowledge. If the jumper enables
them, and a refresh isn’t already requested, we’ll acknowledge
them. If a refresh request comes in, we’ll negate MTACK after
the current cycle finishes, which will result in one more
burst cycle before the full cycle terminates and the refresh
can be acknowledged. I do it this way because I use the
refresh timer to handle the TRASMAX limitation of the DRAM as
wall as handling refresh. */

MTACK = hit & BRENB & !REFREQ
# hit & MTACK & !DOE
# hit & MTACK & MTCR;

MTACK.OE = hit;

/* This is SLAVE, the board select line. Most board activity centers
around this line. If the board is selected and unconfigured,
always respond. Once configured, only respond if it’s not shutup
or shunted. This line is held through the cycle’s end. */

SLAVE = select & FCS & CFGIN & !CFGOUT
# select & FCS & CFGLT & CFGOUT;

/* This indicates if the cycle is a burst cycle. The first cycle is
always a non-burst cycle. If, at the end of the first cycle,
MTCR and MTACK are asserted, all subsequent cycles are burst
until FCS is negated. */

BURST = SLAVE & DOE & MTCR & MTACK
# BURST & FCS;
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PARTNO U300 ;
NAME U300 ;
DATE May 30, 1990 ;
REV 5 ;
DESIGNER Dave Haynie ;
COMPANY Commodore-Amiga ;
ASSEMBLY BIGRAM ;
LOCATION U300 ;

/************************************************************************/
/* */
/* Zorro III BIGRAM DRAM Timing */
/* */
/* This device controls the standard and refresh timing of the */
/* dynamic RAM. Big-Time asynchronicity ahead! This also controls */
/* banking within a CAS controlled memory bank. */
/* */
/************************************************************************/
/* */
/* DEVICE DATA: */
/* */
/* Device: 20L8-10 */
/* Clock: NONE */
/* Unused: NONE */
/* */
/************************************************************************/

/* INPUTS: */

PIN 1 = !RASDEL ; /* RAS strobe delay */
PIN 2 = !MUX ; /* DRAM Address multiplexer */
PIN 3 = !MTCR ; /* Multiple cycle request. */
PIN 4 = !BURST ; /* We’re in burst mode. */
PIN 5 = DOE ; /* Data time */
PIN 6 = !SLAVE ; /* The board is responding */
PIN 7 = !REFACK ; /* We’re servicing a refresh request */
PIN 8 = SCRAM ; /* We’re using static column RAM. */
PIN 9 = A23 ; /* System addresses */
PIN 10 = A22 ;
PIN 11 = A21 ;
PIN 13 = A20 ;
PIN 14 = MEG4 ; /* 4 Meg parts? */
PIN 23 = !CASDEL ; /* CAS strobe delay */

/* OUTPUTS: */

PIN 16 = !CASEN ; /* CAS strobe enable */
PIN 17 = !CASOUT ; /* CAS delay input */
PIN 18 = !REFCAS ; /* CAS for refresh */
PIN 19 = !REFCYC ; /* We’re in a refresh cycle. */
PIN 20 = !DTACK ; /* Data is valid on bus */
PIN 21 = !RASEN ; /* RAS strobe enable */
PIN 22 = BK0 ; /* Small Bank bit 0 */
PIN 15 = BK1 ; /* Small Bank bit 1 */

/** OUTPUT TERMS: **/

/* The data valid signal. Data is valid on the bus if we’re not in a refresh
the board is selected, and something’s happened. The burst cycle is timed by
CAS delay only. */

DTACK = SLAVE & !BURST & !REFACK & !REFCYC & DOE & RASDEL & CASDEL
# SLAVE & !BURST & DTACK
# SLAVE & BURST & !REFACK & !REFCYC & DOE & CASOUT & CASDEL & MTCR
# SLAVE & BURST & DTACK & MTCR;

DTACK.OE = SLAVE;

/* The RAS enable strobe. If we’re not in refresh, it goes as soon
as we’re sure the board is selected. If refresh is called for,
start a RAS cycle after the CAS delay. */

RASEN = !REFACK & !REFCYC & !RASDEL & !CASEN & SLAVE
# !REFACK & !REFCYC & RASEN & !CASEN & SLAVE
# !REFACK & !REFCYC & RASEN & CASEN & !BURST & !SCRAM & !DTACK
# !REFACK & !REFCYC & RASEN & SLAVE & BURST
# !REFACK & !REFCYC & RASEN & SLAVE & SCRAM
# REFCYC & CASDEL & !RASDEL
# REFCYC & RASEN & !RASDEL;
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A.1.3 Memory Timing PAL

This device controls RAS and CAS timing, /DTACK generation, and high order RAM banking.
This must be programmed into a 10ns 20L8 or equivalent device.



/* The CAS enable works differently for burst vs. non-burst. For non-burst,
it follows RASEN after DOE and MUX are asserted. In a burst cycle, it
follows MTCR. For refresh, CAS can’t be enabled until we’re sure that
RASDEL is negated, thus ensuring RAS precharge when a refresh cycle
immediately follows a standard memory cycle. */

CASOUT = !REFACK & !REFCYC & !BURST & RASEN & MUX & DOE & !RASDEL
# !REFACK & !REFCYC & !BURST & CASOUT & DTACK & SLAVE
# !REFACK & !REFCYC & BURST & !CASDEL & MTCR
# !REFACK & !REFCYC & BURST & CASOUT & MTCR
# REFACK & REFCYC & !RASEN & !RASDEL
# CASOUT & REFCYC & !RASEN;

/* The actual CAS that goes out is modified by our use of SCRAMs. If
SCRAMs are in use, CASEN goes low and stays low, while CASOUT works
the DTACK line. Otherwise, CASEN and CASOUT are the same. */

CASEN = !REFACK & !REFCYC & !SCRAM & CASOUT
# !REFACK & !REFCYC & SCRAM & CASOUT
# !REFACK & !REFCYC & SCRAM & CASEN & SLAVE;

/* This is the rest of the refresh machine. A refresh cycle starts with a
valid refresh acknowledge and the assertion of the standard and refresh
CAS. RAS for refresh is asserted one CASDEL later, and standard CAS is
negated at the same point. The refresh counter will clear REFREQ when
REFCYC is asserted, and clear REFACK when REFREQ is negated. */

REFCAS = REFACK & REFCYC & !CASDEL & !RASDEL
# REFCAS & REFCYC & !MUX
# REFCAS & REFCYC & RASEN & !RASDEL;

REFCYC = REFACK & !CASDEL & !RASDEL
# REFCYC & CASOUT & !RASDEL
# REFCYC & RASEN
# REFCYC & RASDEL;

/* Bank control. The bank is controlled by A23 and A22 for 4 Meg memory,
A21 and A20 for 1 Meg memory. */

BK0 = A22 & MEG4
# A20 & !MEG4;

BK1 = A23 & MEG4
# A21 & !MEG4;
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PARTNO U304 ;
NAME U304 ;
DATE May 30, 1990 ;
REV 3 ;
DESIGNER Dave Haynie ;
COMPANY Commodore-Amiga ;
ASSEMBLY BIGRAM ;
LOCATION U304 ;

/************************************************************************/
/* */
/* Zorro III BIGRAM DRAM CAS Select */
/* */
/* This device controls the CAS strobes, which control DRAM byte */
/* enables and most significant bank. */
/* */
/************************************************************************/
/* */
/* DEVICE DATA: */
/* */
/* Device: 20L8-15 */
/* Clock: NONE */
/* Unused: NONE */
/* */
/************************************************************************/

/* INPUTS: */

PIN 1 = !CASEN ; /* Normal CAS enable */
PIN 2 = !DTACK ; /* Zorro III cycle termination */
PIN 3 = !REFCAS ; /* CAS for refresh cycle */
PIN 4 = !REFACK ; /* We’re in refresh */
PIN 5 = !DS3 ; /* Zorro III data strobes */
PIN 6 = !DS2 ;
PIN 7 = !DS1 ;
PIN 8 = !DS0 ;
PIN 9 = SCRAM ; /* Using static column memories */
PIN 10 = READ ; /* Zorro III Read enable */
PIN 11 = MEG4 ; /* Are we using 4 Meg parts? */
PIN 13 = !CADDR ; /* Column Address Valid */
PIN 14 = A24 ; /* Address lines */
PIN 23 = A22 ;

/* OUTPUTS: */

PIN 15 = !CASL0 ; /* Lower bank CAS */
PIN 16 = !CASL1 ;
PIN 17 = !CASL2 ;
PIN 18 = !CASL3 ;
PIN 19 = !CASH0 ; /* Upper bank CAS */
PIN 20 = !CASH1 ;
PIN 21 = !CASH2 ;
PIN 22 = !CASH3 ;

/** INTERNAL TERMS: **/

/* The CAS lines are the highest order banking control. If we’re using 1 Meg
parts, lower is $0000000-$03fffff, upper is $0400000-$07fffff, so A22 controls
the banking. If we’re using 4 Meg parts, lower is $0000000-$0ffffff, upper is
$1000000-$1ffffff, so A24 controls the banking. */

lower = !A24 & MEG4 & CASEN & CADDR
# !A22 & !MEG4 & CASEN & CADDR;

upper = A24 & MEG4 & CASEN & CADDR
# A22 & !MEG4 & CASEN & CADDR;

/** OUTPUT TERMS: **/

/* The CAS terms are simple. There are two banks of memory, and the banking
is controlled as above. On writes, the data strobes control the particular
CAS line, and we wait for WRDEL so that data is guaranteed valid on the
DRAM bus. On reads, all CAS lines in a bank are asserted ASAP. On
refresh, all CAS lines are asserted. */

CASL0 = lower & !READ & DS0
# lower & READ
# REFCAS;

CASL1 = lower & !READ & DS1
# lower & READ
# REFCAS;
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A.1.4 CAS Control PAL

This device controls the CAS generation and banking. This must be programmed into a 15ns
20L8 PAL device or equivalent.



CASL2 = lower & !READ & DS2
# lower & READ
# REFCAS;

CASL3 = lower & !READ & DS3
# lower & READ
# REFCAS;

CASH0 = upper & !READ & DS0
# upper & READ
# REFCAS;

CASH1 = upper & !READ & DS1
# upper & READ
# REFCAS;

CASH2 = upper & !READ & DS2
# upper & READ
# REFCAS;

CASH3 = upper & !READ & DS3
# upper & READ
# REFCAS;
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PARTNO U306 ;
NAME U306 ;
DATE May 30, 1990 ;
REV 1 ;
DESIGNER Dave Haynie ;
COMPANY Commodore-Amiga ;
ASSEMBLY BIGRAM ;
LOCATION U306 ;

/************************************************************************/
/* */
/* Zorro III BIGRAM DRAM Refresh Counter. */
/* */
/* This device is responsible for generating refresh request. */
/* */
/************************************************************************/
/* */
/* DEVICE DATA: */
/* */
/* Device: 16R8-25 */
/* Clock: C7M */
/* Unused: NONE */
/* */
/************************************************************************/

/* INPUTS: */

PIN 2 = !REFACK ; /* We’re servicing a refresh request */
PIN 3 = !REFCYC ; /* We’re in a refresh cycle. */

/* BIDIRECTIONALS: */

PIN 19 = !REFREQ ; /* Refresh request */

/* USED INTERNALLY: */

PIN 18 = !R0 ; /* Counter bits */
PIN 17 = !R1 ;
PIN 16 = !R2 ;
PIN 15 = !R3 ;
PIN 14 = !R4 ;
PIN 13 = !R5 ;
PIN 12 = !R6 ;

/** INTERNAL TERMS: **/

field count = [R6..0];

/** OUTPUT TERMS: **/

/* The refresh request is asserted when the terminal count has been reached.
It’s held until REFHOLD is asserted. */

REFREQ.D = count:70
# REFREQ & !REFCYC;

/* The refresh counter is pretty simple. We’re assuming one refresh cycle
every 15,625ns, which works out fine for the 8ms, 512 row 1 Meg parts
or the 16ms, 1024 row 4 Meg parts. However, the maximum TRAS period
is only 10,000ns, which must be taken into account to support burst
mode. Counting 71 140ns C7M clocks gets me to 9,940ns, close enough.
The counter resets when REFCYC comes along. */

R0.D = !REFCYC & !R0;

R1.D = !REFCYC & R0 & !R1
# !REFCYC & !R0 & R1;

R2.D = !REFCYC & R0 & R1 & !R2
# !REFCYC & !R1 & R2
# !REFCYC & !R0 & R2;

R3.D = !REFCYC & R0 & R1 & R2 & !R3
# !REFCYC & !R2 & R3
# !REFCYC & !R1 & R3
# !REFCYC & !R0 & R3;

R4.D = !REFCYC & R0 & R1 & R2 & R3 & !R4
# !REFCYC & !R3 & R4
# !REFCYC & !R2 & R4
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A.1.5 Refresh Counter PAL

This device is responsible for timing the CAS-before-RAS refresh used by the DRAM system.
This must be programmed into a 25ns 16R8 or equivalent device.



# !REFCYC & !R1 & R4
# !REFCYC & !R0 & R4;

R5.D = !REFCYC & R0 & R1 & R2 & R3 & R4 & !R5
# !REFCYC & !R4 & R5
# !REFCYC & !R3 & R5
# !REFCYC & !R2 & R5
# !REFCYC & !R1 & R5
# !REFCYC & !R0 & R5;

R6.D = !REFCYC & R0 & R1 & R2 & R3 & R4 & R5 & !R6
# !REFCYC & !R5 & R6
# !REFCYC & !R4 & R6
# !REFCYC & !R3 & R6
# !REFCYC & !R2 & R6
# !REFCYC & !R1 & R6
# !REFCYC & !R0 & R6;
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A.2 Schematics

The following pages contain the schematics for the example memory board. The list of parts is
as follows:

Capacitors
0.01µF MLC C109
0.10µF MLC C100-C107,C200-C203,C300-C306,C400-C404
0.33µF MLC C500,C502,C504,C506,C508,C510,C512,C514,C516,C518,C520,

C522,C524,C526,C528,C530,C600,C602,C604,C606,C608,C610,
C612,C614,C616,C618,C620,C622,C624,C626,C628,C630

47 µF, 16V Electro C108
100µF, 16V Electro C110,C111

Resistors
22 Ω, 5%, 1/4 Watt R300,R301
1K Ω, 5%, 1/4 Watt R100

Resistor Packs
22 Ω, 4x8 RP300-RP303,RP400-RP404
1K Ω, 9x10 RP100

Post Jumpers
3 Pin, 0.100 J200,J302,J303
2 Pin x 3 Pin, 0.100 J300
2 Pin x 4 Pin, 0.100 J301

Integrated Circuits
74F138 U305
74F244 U303
74F245 U100,U104-U107
74F258 U400-U404
74F373 U101-U103
74F374 U202
74F521 U203
PAL 16L8B U200
PAL 16R8A U306
PAL 20L8B U300,U304
PAL 20L8D U201
Tap Delay 100ns U301
Tap Delay 50ns U302
DRAM 256K x 4, 80ns U500-U531,U600-U631

or 1M x 4, 80ns
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A.3 Zorro III Configuration

While presumably AmigaOS 2.0 will understand Zorro III AUTOCONFIG conventions, the
following routine is useful for configuring simple Zorro III boards in an AmigaOS 1.3 system.
Note that many popular MMU configurations don’t map in the Zorro III configuration space at
$FF000000, so this program is not likely to work with an MMU mapping in place.

/* ====================================================================== */

/* A very simple configuration utility for Zorro III boards. This code will
configure Zorro III cards that are placed after any Zorro II cards in
the A3000. All configuration is done based on 16 meg slots and no magic
for autoboot, etc. Eventually 2.0 will do this better. */

#include <exec/types.h>
#include <exec/memory.h>
#include <libraries/configregs.h>
#include <libraries/configvars.h>
#include <libraries/expansionbase.h>
#include <stdio.h>
#include <ctype.h>
#include <functions.h>

/* ====================================================================== */

/* Modified configuration information. */

/* Extensions to the TYPE field. */

#define E_Z3EXPBASE 0xff000000L
#define E_Z3EXPSTART 0x10000000L
#define E_Z3EXPFINISH 0x7fffffffL
#define E_Z3SLOTSIZE 0x01000000L
#define E_Z3ASIZEINC 0x00010000L

#define ERT_ZORROII ERT_NEWBOARD
#define ERT_ZORROIII 0x80

/* Extensions to the FLAGS field. */

#define ERFB_EXTENDED 5L
#define ERFF_EXTENDED (1L<<5)

static BoardSize[2][8] = {
{ 0x00800000,0x00010000,0x00020000,0x00040000,

0x00080000,0x00100000,0x00200000,0x00400000 },
{ 0x01000000,0x02000000,0x04000000,0x08000000,

0x10000000,0x20000000,0x40000000,0x00000000 }
};

#define ERFB_QUICKVALID 4L
#define ERFF_QUICKVALID (1L<<4)

#define ERF_SUBMASK 0x0fL
#define ERF_SUBSAME 0x00L
#define ERF_SUBAUTO 0x01L
#define ERF_SUBFIXED 0x02L
#define ERF_SUBRESERVE 0x0eL

static SubSize[16] = {
0x00000000,0x00000000,0x00010000,0x00020000,
0x00040000,0x00080000,0x00100000,0x00200000,
0x00400000,0x00600000,0x00800000,0x00a00000,
0x00c00000,0x00e00000,0x00000000,0x00000000

};

#define PRVB(x)if (verbose) { printf(x); }

static BOOL verbose = TRUE;
static BOOL anyone = FALSE;
struct ExpansionBase *ExpansionBase;
static ULONG Z3Space = 0x10000000L;

/* ====================================================================== */

/* These functions are involved in finding a Zorro III board. */

/* This function reads the logical value stored at the given Zorro III
ROM location. This corrects for complements and the differing offsets
depending on location. */
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UBYTE ReadZ3Reg(base,reg)
WORD *base;
WORD reg;
{

ULONG *Z3base;
UWORD result;

if (base == (WORD *)E_EXPANSIONBASE) {
base += (reg>>1);
result = ((*base++)&0xf000)>>8;
result = ((*base)&0xf000)>>12;

} else {
Z3base = (ULONG *)(base+(reg>>1));
result = ((*Z3base)&0xf0000000)>>24;
result |= ((*(Z3base+0x40))&0xf0000000)>>28;

}
if (reg) result = ~result;

return (UBYTE)result;
}

/* This function types the board in the system, returning the type code.
There are four possibilities -- no board, a Zorro II board, a Zorro III
board at the Zorro II configuration slot, and a Zorro III board at the
Zorro III configuration slot. */

#define BT_NONE 0
#define BT_Z2 1
#define BT_Z3_AT_Z2 2
#define BT_Z3_AT_Z3 3

BYTE TypeOfPIC() {
UBYTE type;
UWORD manf;

type = ReadZ3Reg(E_EXPANSIONBASE,0x00);
manf = ReadZ3Reg(E_EXPANSIONBASE,0x10)<<8 | ReadZ3Reg(E_EXPANSIONBASE,0x14);

if (manf != 0x0000 && manf != 0xffff) {
if ((type & ERT_TYPEMASK) == ERT_ZORROII) return BT_Z2;
if ((type & ERT_TYPEMASK) == ERT_ZORROIII) return BT_Z3_AT_Z2;

}
type = ReadZ3Reg(E_Z3EXPBASE,0x00);
manf = ReadZ3Reg(E_Z3EXPBASE,0x10)<<8 | ReadZ3Reg(E_Z3EXPBASE,0x14);

if (manf != 0x0000 && manf != 0xffff)
if ((type & ERT_TYPEMASK) == ERT_ZORROIII) return BT_Z3_AT_Z3;

return BT_NONE;
}

/* This function fills the configuration ROM field of the given
ConfigDev, form the given address, based on the appropriate mapping
rules. */

void InitZ3ROM(base,cd)
WORD *base;
struct ConfigDev *cd;
{

struct ExpansionRom *rom;

rom = &cd->cd_Rom;

rom->er_Type = ReadZ3Reg(base,0x00);
rom->er_Product = ReadZ3Reg(base,0x04);
rom->er_Flags = ReadZ3Reg(base,0x08);
rom->er_Reserved03 = ReadZ3Reg(base,0x0c);
rom->er_Manufacturer = ReadZ3Reg(base,0x10)<< 8 | ReadZ3Reg(base,0x14);
rom->er_SerialNumber = ReadZ3Reg(base,0x18)<<24 | ReadZ3Reg(base,0x1c)<<16 |
ReadZ3Reg(base,0x20)<< 8 | ReadZ3Reg(base,0x24);
rom->er_InitDiagVec = ReadZ3Reg(base,0x28)<< 8 | ReadZ3Reg(base,0x2c);
rom->er_Reserved0c = ReadZ3Reg(base,0x30);
rom->er_Reserved0d = ReadZ3Reg(base,0x34);
rom->er_Reserved0e = ReadZ3Reg(base,0x38);
rom->er_Reserved0f = ReadZ3Reg(base,0x3c);

}

/* This function locates a Zorro III board. If it finds one in the
unconfigured state, it allocates a ConfigDev for it, fills in the
configuration data, and returns that ConfigDev. Otherwise it returns
NULL. It knows the basics of what to do should it encounter a
Zorro II board sitting in the way. */

struct ConfigDev *FindZ3Board() {
struct ConfigDev *cd;

while (TRUE) {
if (!(cd = AllocConfigDev())) return NULL;
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switch (TypeOfPIC()) {
case BT_NONE :

FreeConfigDev(cd);
return NULL;

case BT_Z2 :
PRVB("FOUND: Z2 Board, Configuring");
if (!ReadExpansionRom(E_EXPANSIONBASE,cd))

if (!ConfigBoard(E_EXPANSIONBASE,cd))
AddConfigDev(cd);

anyone = TRUE;
break;

case BT_Z3_AT_Z2 :
PRVB("FOUND: Z3 Board (Z2 Space), Configuring");
InitZ3ROM(E_EXPANSIONBASE,cd);
cd->cd_BoardAddr = (APTR)E_EXPANSIONBASE;
anyone = TRUE;
return cd;

case BT_Z3_AT_Z3 :
PRVB("FOUND: Z3 Board (Z3 Space), Configuring");
InitZ3ROM(E_Z3EXPBASE,cd);
cd->cd_BoardAddr = (APTR)E_Z3EXPBASE;
anyone = TRUE;
return cd;

}
}
return NULL;

}

/* ====================================================================== */

/* These functions are involved in configuring a Zorro III board. */

/* This function writes the configuration address stored in the given
ConfigDev to the board in the proper way. */

void WriteCfgAddr(base,cd)
UWORD *base;
struct ConfigDev *cd;
{

UBYTE nybreg[4],bytereg[2],*bytebase;
UWORD wordreg,i,*wordbase;

wordreg = (((ULONG)cd->cd_BoardAddr)>>16);
bytereg[0] = (UBYTE)(wordreg & 0x00ff);
bytereg[1] = (UBYTE)(wordreg >> 8);
nybreg[0] = ((bytereg[0] & 0x0f)<<4);
nybreg[1] = ((bytereg[0] & 0xf0));
nybreg[2] = ((bytereg[1] & 0x0f)<<4);
nybreg[3] = ((bytereg[1] & 0xf0));

bytebase = (UBYTE *)(base + 22);
wordbase = (UWORD *)(base + 22);

if (base == (UWORD *)E_EXPANSIONBASE) {
(*(bytebase+0x002)) = nybreg[2];
(*(bytebase+0x000)) = bytereg[1];
(*(bytebase+0x006)) = nybreg[1];
(*(bytebase+0x004)) = bytereg[0];

} else {
(*(bytebase+0x104)) = nybreg[0];
(*(bytebase+0x004)) = bytereg[0];
(*(bytebase+0x100)) = nybreg[2];
(*(wordbase+0x000)) = wordreg;

}
}

/* This function automatically sizes the configured board described by the
given ConfigDev. It doesn’t attempt to preserve the contents. */

void AutoSizeBoard(cd)
struct ConfigDev *cd;
{

ULONG i,realmax,logicalsize = 0;

realmax = ((ULONG)cd->cd_SlotSize) * E_Z3SLOTSIZE + (ULONG)cd->cd_BoardAddr;

for (i = (ULONG)cd->cd_BoardAddr; i < realmax; i += E_Z3ASIZEINC)
*((ULONG *)i) = 0;

for (i = (ULONG)cd->cd_BoardAddr; i < realmax; i += E_Z3ASIZEINC) {
if (*((ULONG *)i) != 0) break;
*((ULONG *)i) = 0xaa5500ff;
if (*((ULONG *)i) != 0xaa5500ff) break;
logicalsize += E_Z3ASIZEINC;

}
cd->cd_BoardSize = (APTR)logicalsize;

}
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/* This function configures a Zorro III board, based on the initialization
data in its ConfigDev structure. */

void ConfigZ3Board(cd)
struct ConfigDev *cd;
{

APTR base = cd->cd_BoardAddr;
UWORD sizecode,extended,subsize;
ULONG physsize,logsize;
char *memname;

/* First examine the physical sizing of the board. */

sizecode = cd->cd_Rom.er_Type & ERT_MEMSIZE;
extended = ((cd->cd_Rom.er_Flags & ERFF_EXTENDED) != 0);

physsize = BoardSize[extended][sizecode];

cd->cd_BoardAddr = (APTR)Z3Space;
cd->cd_BoardSize = (APTR)physsize;
cd->cd_SlotAddr = (Z3Space-E_Z3EXPSTART)/E_Z3SLOTSIZE;
cd->cd_SlotSize = ((physsize/E_Z3SLOTSIZE)>0)?(physsize/E_Z3SLOTSIZE):1;
Z3Space += cd->cd_SlotSize * E_Z3SLOTSIZE;

/* Next, process the sub-size, if any. */

if (subsize = (cd->cd_Flags & ERF_SUBMASK))
cd->cd_BoardSize = (APTR)SubSize[subsize];

if (verbose) {
printf(" BOARD STATS:");
printf(" ADDRESS: $%lx",cd->cd_BoardAddr);
if (cd->cd_BoardSize)

printf(" SIZE: $%lx",cd->cd_BoardSize);
else

printf(" SIZE: AUTOMATIC => ");
}

/* Now, configure the board. */

WriteCfgAddr(base,cd);
if (!cd->cd_BoardSize) {

AutoSizeBoard(cd);
printf("$%lx",cd->cd_BoardSize);

}

if (cd->cd_BoardSize && (cd->cd_Rom.er_Type & ERTF_MEMLIST)) {
strcpy(memname = (char *)AllocMem(20L,MEMF_CLEAR),"Zorro III Memory");
AddMemList(cd->cd_BoardSize,MEMF_FAST|MEMF_PUBLIC,10,cd->cd_BoardAddr,memname);

}

AddConfigDev(cd);
}

/* ====================================================================== */

/* This is the main program. */

void main(argc,argv)
int argc;
char *argv[];
{

int i;
struct ConfigDev *cd;

if (!(ExpansionBase = (struct ExpansionBase *)OpenLibrary("expansion.library",0L))) {
printf("Error: Can’t open "expansion.library"");
exit(10);

}
if (argc > 1)

for (i = 1; i < argc; ++i) switch (toupper(argv[i][0])) {
case ’Q’: verbose = FALSE; break;
case ’V’: verbose = TRUE; break;

}

while (cd = FindZ3Board()) ConfigZ3Board(cd);

if (!anyone) PRVB("No PICs left to configure");
CloseLibrary((struct ExpansionBase *)ExpansionBase);

}
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